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Abstract

An electromagnetic (EM) wave originating at or near the earth’s surface can propagate upwards, tra-
verse the ionosphere, and then be detected at a satellite. While the signal’s magnitude will affect its de-
tectabilty, its polarization will play an important role as well. Furthermore the signal polarization can
reveal properties about its source, and the ionospheric conditions through which it traveled. Thus, it
is desirable to predict the polarization characteristics of trans-ionospheric EM signals. This situation
is complicated by the birefringence imposed on an EM wave propagating in the magnetized plasma
of the ionosphere. Each frequency component of the signal can excite two waves that propagate at
different phase velocities due to their separate refractive characteristics.

For this work, the amplitude and phase of each EM wave field spatial component is followed as it
crosses the lower ionospheric boundary, traverses the ionosphere and then crosses the upper bound-
ary. Results are for a single frequency, and can be easily extended to broadband waveforms using
fourier transform techniques.
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1 introduction

As an upward traveling EM wave encounters the underside of the ionosphere, each vector compo-
nent of the wave’s electric and magnetic fields will be separated into two distinct parts due to the bi-
refringent nature of the magnetized plasma in the ionosphere [5, 3, 1, 2, 9]. Each part, or mode, may
or may not propagate depending on the dispersive characteristics of the plasma at each frequency
component of the incoming wave.

This mode partitioning comes from the four solutions of the magnetized Cold Plasma Dispersion
Relation (CPDR): a forward and backward traveling fast wave root, and a forward and backward trav-
eling slow wave root - fast and slow relating to their relative phase velocities. These four roots come
from the solution of the wave equation derived from the Maxwell equations, which is fourth order for
propagation in a magnetized plasma medium. These roots are separated into two principal roots (fast
and slow), understanding that each has a forward and backward component.

Each mode has different dispersive characteristics, and will contribute differently to the amplitude
and phase of each wave field component. Thus, in order to accurately track the wave as it propagates
through the ionosphere it’s field amplitudes must be parsed into fast and slow mode contributions
calculated from the CPDR at the entrance and exit of the ionosphere. This information is critical in
applications where EM radiation is propagated through the ionosphere and detected at a satellite-
based antenna. For example, in ray tracing techniques, the amplitude and phase of the fast and slow
wave modes is tracked separately through the ionosphere. Correct power partitioning between the
modes is required to correctly superpose the transmitted fields at the receiver, giving the proper po-
larization characteristics.

The goal of this report is to accurately partition the contribution of each mode in each wave
field component (or mode polarization) as the wave encounters, traverses, and exits the ionospheric
plasma.

The ionosphere will be represented by a cold, collisionless plasma in which the ions are too mas-
sive to respond to any phenomena on the time scale of the EM wave (RF frequency).

This work draws heavily from Budden [4], chapters 1 through 8.

2 the problem

An EM pulse is generated at or near the earth’s surface, with a magnitude V (t ) in Volts/meter. This
waveform will propagate to a satellite-based detector. It must traverse three discrete regions: free
space, ionosphere, and then free space to reach the detector. At each boundary with free space, the
ionosphere will be represented locally by a homogeneous, anisotropic plasma; that is, it will have no
spatial variation in the local plasma density or magnetic field. The boundaries between each region
will be assumed abrupt (not gradual). Furthermore, given the distances involved, the waveform prop-
agates as a far-field plane wave on either side of the ionosphere, with the electric field assuming some
polarization in a plane transverse to the direction of propagation wave vector S. The incident wave
can be linear, elliptical, or circular. Also, due to the distances and wavelengths involved, the local
geometry at the areas where the wave enters and exits the ionosphere will be assumed rectilinear.

Figure 1 shows the general situation of EM propagation through the ionosphere as it relates to
the formulation in this report. A signal is assumed to originate on the earth’s surface, or somewhere
in the lower atmosphere. It then encounters the underside of the ionosphere and undergoes a bi-
refringent mode splitting inside the magnetized ionospheric plasma, as well as partially reflecting
from the boundary. Each mode will then propagate through the ionosphere suffering different dis-
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Figure 1: EM wave propagation through the ionosphere represented by rays. The ionosphere introduces a bi-refringent

mode splitting of the incident wave.

persive characteristics (sometimes only one or neither will traverse the whole ionospheric width at a
given frequency) and encounter the topside ionospheric boundary. Each mode will partially transmit
and partially reflect at that boundary. The reflected part of each mode will again split, giving a total
of four reflected components (multiple reflections are ignored). After crossing the topside boundary,
the total electric (or magnetic) wave field can then be calculated as the superposition of each mode
contribution to each wave field spatial component.

Note that for this report, internal reflections between the top and bottom of the ionosphere are not
considered. This is due to the distances involved and anticipated signal strengths of the EM signals.

3 wave polarization definitions

EM waves of concern for this report have wavelengths that are minute compared to the distances they
travel to be detected (λ/d <<< 1). They can therefore be treated as plane waves. By definition, the
electric and magnetic field components of a plane wave in free space (a homogeneous and isotropic
medium) lie in a plane transverse to the direction of propagation (wave normal). Thus, for the electric
field

E ⊥ S

where E is the EM wave’s electric field, S is the wave normal direction, and bold quantities represent
vectors. This is not the case in a magnetized (anisotropic) plasma, where the electric field can have a
component along the direction of wave propagation as well, so that in general the wave electric field

4



can be separated into components along and across S such that

E = Eem+Ees

where the em/es subscripts refer to electromagnetic and electrostatic components respectively ac-
cording to standard definitions of wave propagation in plasmas [1, 2, 3]

Eem ⊥ S, Ees ∥ S

and Eem,Ees can each be decomposed into one or more unit vectors in a given coordinate system.
The polarization state ρ of a plane wave is a quantity describing the electric field orientation Eem

at a given point in space/time as a function of time/space. For a coordinate system with S along the z
axis, the polarization state is given as [4, 5]

ρ = Ey /Ex (1)

where
Ex,y ∼ E1,2 e−i(nωz/c−ωt+φx,y ) (2)

n is the index of refraction, c is the speed of light, and φx,y represents any phase difference between
the components that had previously existed before entering the propagation medium (say, from an
antenna). In an anisotropic medium (magnetized plasma), n can be different for the two field com-
ponents, as will be discussed later. In general, ρ will be a complex quantity.

In a magnetized plasma, by symmetry, it is straightforward to rotate into a coordinate system to
where the z axis is aligned such that S lies on the z axis, with the magnetic field B0 in the x - z plane at
an angle θ to S, as shown in Fig. 2. In this coordinate system, ρ is found in the same way as above.

The computation ofρ is given

Figure 2: Coordinate system with S along z and B0 in the x − z plane.

in many standard texts in terms
of the Poincaré sphere or Stokes
parameters [6, 7, 8]. Only a brief
summary is given here.

Referring back to equations 1
and 2, specify a fixed point in space
(say z = z0) to find ρ

ρ = E2

E1
e−i∆Φ (3)

where ∆Φ is the phase of Ex rela-
tive to Ey

∆Φ= ωz0

c
(ny −nx)+φy −φx (4)

Figure 3 summarizes the wave polarization states for a span of E2/E1 and phase differences (from
Kraus [6]).

A straightforward method of detecting an electromagnetic plane wave of arbitrary polarization
with a linear antenna is done by decomposing the incoming wave electromagnetic field into its in-
dividual components, and then forming the vector dot product of each with the antenna effective
length (defined such that the effective length, multiplied by the amplitude in V/m of the incoming
wave electric field component, equals the open circuit voltage at the terminals of the antenna [6, 8]).
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Figure 3: Wave polarization definitions (from Kraus [6]). E2/E1 and ∆Φ are the magnitude and phase of ρ respectively.

These definitions are for a wave approaching the viewer.

Of course, as mentioned earlier, this is all done for a single frequency. A finite bandwidth signal can
be decomposed into its fourier components and each can be treated as above.

For this report, the broadband signal will travel from free space, through the ionospheric plasma,
and then through free space again to reach a detector. Each frequency component of the signal will
have suffered a frequency dependent phase delay for each of two modes in the plasma - described
below. Each frequency component can be characterized as linear, circular, or elliptical; but the total
time signal will have a complicated phase characterization determined by the individual field com-
ponents, each of which has been formed by the superposition of two modes after they have emerged
from the ionosphere and traveled to the antenna.

4 progressive plane waves

Any plane wave in a homogeneous medium can be decomposed into component progressive plane
waves (PPW’s). This process is similar to spatial fourier decomposition, and it will be shown in isotropic
(non-magnetized) and anisotropic (magnetized) homogeneous plasma [4, 5]. Furthermore, for a
magnetized plasma, the component PPW’s are the two solutions to the magnetized Cold Plasma Dis-
persion Relation (CPDR). This construct is very helpful in calculating the mode contribution to the
fields of propagating EM waves as they approach, and cross, boundaries.

A review of the constituitive relations, and their use in Maxwell’s equations will help in the presen-
tation of PPW’s.
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4.1 Maxwell’s equations

Maxwells equations for the plane wave field components in a medium with magnetic permeability
µ=µ0 (such as a plasma) are

∇·D = 0 (5)

∇·B = 0 (6)

∇×E =−µ0
∂H

∂t
(7)

∇×H = ∂D

∂t
(8)

where field the field descriptions are given below -

E Electric field intensity (V/m)

D Electric displacement (Coulomb/m2)

H Magnetic intensity (Amp-turn/m)

B Magnetic induction (T)

The electric polarization is defined as

P ≡ Ner (Coulomb/m2) (9)

where N is the density of electrons, e is the electron charge (a negative number), and r is the average
length of displacement of the electron distribution; for example, the length traversed during a time
period for harmonically driven displacement due to a wave field. This implies that P is defined over a
volume that is large enough to contain many electrons given their density N . This volume has a scale
length dimension of the debye length lD [4], such that the volume is given by l 3

D . The debye length is
on the order of a few centimeters or smaller in the ionosphere [4].

The electric displacement field is defined as

D ≡ ε0E+P (10)

showing the contributions from the wave electric field and the polarization due to electron motion.
Consider a rectilinear geometry in which time harmonic waves, where all field quantities have

time dependence of e iωt , travel. The wave fields will further be assumed first order, that is, they do not
change the background equilibrium of the plasma, and second order effects are negligible. Faraday’s
(eqn. 7) and Ampere’s (eqn. 8) equations are the starting point for finding solutions for a propagating
wave. Their component forms are

∂Ez

∂y
− ∂Ey

∂z
= − iωµ0H x

∂Hz

∂y
− ∂Hy

∂z
= iωDx (11)

∂Ex

∂z
− ∂Ez

∂x
= − iωµ0H y

∂Hx

∂z
− ∂Hz

∂x
= iωD y (12)

∂Ey

∂x
− ∂Ex

∂y
= − iωµ0H z

∂Hy

∂x
− ∂Hx

∂y
= iωDz (13)
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4.2 constituitive relations

In order to acquire solutions for wave E and H fields in a medium other than free space, it is neces-
sary to relate the polarization P to E in the displacement field (eqn. 10). These relations are known as
the constituitive relations for the specific medium (homogeneous plasma for this case). A homoge-
neous plasma can be either isotropic (non-magnetized) or anisotropic (magnetized), and each will be
considered.

4.2.1 non-magnetized plasma

In this case, there is no applied magnetic field and the equation of motion for the electrons (neglecting
collisions) is [3, 4, 1, 9]

eN E = N me
∂2r

∂t 2
(14)

where me is the electron mass, and all quantities are time harmonic (first order). The definition of P
in eq. 9 can be used to re-write eqn. 14 to give the constituitive relation between the electric field and
the polarization in a non-magnetized plasma

P = − Ne2

ω2me
E = −ε0X E (15)

where X is the well known parameter in ionospheric physics

X ≡ Ne2

ω2ε0me
=
ω2

p

ω2
(16)

Thus, from the definition of the displacement field (eqn. 10)

D = ε0(1−X )E = ε0εr E (17)

where εr is the relative permittivity defined from the refractive index n

n2 ≡ εr = 1−X (18)

And n is recognized as the refractive index for an EM wave in a non-magnetized plasma [5, 3]. It is a
scalar that depends on frequency and plasma density. Note that the relationship between each spatial
component of D and E for this case is proportional

Dx ∝ Ex

D = ε0n
2E =⇒ D y ∝ Ey

Dz ∝ Ez (19)

4.2.2 magnetized plasma

Here, the homogeneous plasma is immersed in a static magnetic field B0. The equation of motion for
electrons is [3, 5, 1, 2, 9]

eN E+eN
∂r

∂t
×B0 = N me

∂2r

∂t 2
(20)
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and all wave quantities (E, r) are time harmonic. Again, using the definition of P from eqn. 9, this is re
written as

Ne2

meω2
E+ i e

mω
P×B0 = P (21)

Now introduce the vector quantity

Y = eB0

mω
= −ωc

ω

(
lx x̂ + ly ŷ + lz ẑ

)
(22)

which is also well known in the ionospheric physics field. The direction cosines of B0 are lx , ly , lz in
the rectilinear coordinate system. Also note that the electron charge e is negative, so that the vector Y
will be antiparallel to B0. Equation 21 is now

−ε0X E = P+ i P×Y = µ ·P =
 1 i Y lz −i Y ly

−i Y lz 1 i Y lx

i Y ly −i Y lx 1

 ·P (23)

where eqn. 16 has been used. This is the constituitive relation between P and E in a magnetized
plasma.

Using this result and eqn. 10, the displacement field is

D = ε0E−ε0X µ −1 ·E = ε0
(
I−X µ −1)E (24)

where the tensor I is

I =
1 0 0

0 1 0
0 0 1


The refractive index is now a tensor as well

n = n = (
I−X µ −1)1/2

(25)

Note now that a single spatial component of D depends on all three spatial components of E.

Dx ∝ Ex ,Ey ,Ez

D y ∝ Ex ,Ey ,Ez

Dz ∝ Ex ,Ey ,Ez (26)

4.3 plane and progressive plane wave solutions to Maxwell’s equations

As mentioned earlier, any arbitrary plane wave can be decomposed into component progressive plane
waves. In what follows, the plane wave solutions to Maxwell’s equations will be found for both the
isotropic and anisotropic homogeneous plasma cases. These solutions will be shown to consist of
component progressive plane waves: a situation similar to fourier decomposition in space.

A plane wave is defined to be a “disturbance in which there is no variation of any field component
in any plane parallel to a fixed plane” [4]. For simplicity, choose the z axis to be normal to this (x − y)
plane. This axis is then said to be the wave normal direction. Thus, for all field components in the
plane wave

∂

∂x
,
∂

∂y
→ 0 (27)
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Ampere’s and Faraday’s equations (eqns. 11 - 13) are then

∂Ey

∂z
= iωµ0H x

∂Hy

∂z
=−iωDx (28)

∂Ex

∂z
=−iωµ0H y

∂Hx

∂z
= iωD y (29)

Hz = 0 Dz = 0 (30)

showing that the D and H fields are perpendicular (also called transverse)to the plane wave normal.

4.3.1 non-magnetized plasma

It has already been shown in section 4.2.2 that each spatial component of D is directly proportional
to the corresponding spatial component of E, and thus D, H, and E are all transverse and no field
component exists in the wave normal (z) direction. From eqns. 17, 28, and 29, two independent wave
equations for Ex and Ey can be derived

∂2Ex

∂z2
+k2n2Ex = 0

∂2Ey

∂z2
+k2n2Ey = 0 (31)

where k =ω/c =p
ε0µ0 and the index of refraction is

p
1−X from eqn. 18. Two important items must

be pointed out. First, both waves see the same refractive index. Second, the solutions for Ex and Ey

are independent, that is, one can change or even vanish without affecting the other. This means that
each wave is linearly polarized; one in x, and one in y . The solutions to eqn. 31 are

E (1)
x e−i knz E (2)

x e+i knz (32)

E (1)
y e−i knz E (2)

y e+i knz (33)

where E (1),(2)
x , E (1),(2)

y are independent of z and t , as well as each other. These four solutions represent
two forward (+z) and two backward (−z) traveling plane waves that can propagate in a homogeneous,
isotropic medium.

Consider the forward traveling x-polarized wave. Substitution of the left side eqn. of 32 into Fara-
day’s law (left eqn. of 29) gives

E (1)
x

H (1)
y

=
√
µ0

ε0

1

n
= Z = Z0

1

n
(34)

This ratio is known as the wave impedance of the forward traveling plane wave. The parameter Z0

is approximately 377 Ω [4], so that in free-space, where n = 1, this wave’s impedance will be Z0. In a
homogeneous isotropic medium, n is a scalar value, and thus Z is a constant scalar with no spatial
dependence. Furthermore, the field quantities Ex and Hy of this wave depend on the wave normal
direction (z) only through the factor exp(−i knz). A plane wave with a spatially independent wave
impedance whose field components dependence on the wave normal direction (z for this case) is
given by exp(−i knz) is called a progressive plane wave [4].

Similarly, for the −z traveling x-pol and ±z traveling y-pol waves in eqns. 32 and 33

E (2)
x

H (2)
y

= −Z0
1

n
,

E (1)
y

H (1)
x

= −Z0
1

n
,

E (2)
y

H (2)
x

= +Z0
1

n
(35)

showing that they are also progressive plane waves.

10



Consider a different solution to the x-pol plane wave equation (31) in the forward z direction

Ex = E (1)
x cos(knz) (36)

This is a plane wave, and is easily decomposed into two component PPW’s from eqn. 32. However,
substitution of this solution into Faraday’s equation (29) gives

E (1)
x

H (1)
y

= iZ0
1

sin(knz)
(37)

which shows that this plane wave is not a PPW because the wave impedance is not independent of
the wave normal direction.

The examples given above were for an x-pol plane wave, and apply equally to a y-pol plane wave.
Any arbitrarily x − y polarized plane wave can be decomposed into x and y components found from
eqns. 32 and 33. Furthermore, the plane waves considered above were traveling in the ±z direction.
Naturally, the results apply for an arbitrary wave normal direction, where the fields are specified in a
plane perpendicular to that direction. In that case, a combination of both x and y polarized PPW’s
can be used to construct an arbitrary plane wave.

To summarize, in a homogeneous, isotropic medium an arbitrary plane wave can be decomposed
into linearly polarized PPW’s where the E-field of one will be perpendicular to the E-field of the other.
There are no restrictions on the amplitude or relative phasing of the component PPW’s.

Mathematically, solutions to the wave equation derived from Faraday’s and Ampere’s laws for
plane waves and propagating plane waves can be summarized as follows for ±z directed propaga-
tion

PW :
∂

∂x
,
∂

∂y
= 0 PPW :

∂

∂x
,
∂

∂y
= 0;

∂

∂z
= ± i kn (38)

or, more generally

PW :
∂

∂x1
,
∂

∂x2
= 0 PPW :

∂

∂x1
,
∂

∂x2
= 0;

∂

∂x3
= ± i kn (39)

for a PW or PPW traveling in the ±x3 direction, where the x1, x2, x3 right handed coordinate system is
rotated relative to the x, y, z coordinate system in order to make the wave normal direction parallel to
a principal axis.

4.3.2 the notation H and H

In free-space, the PPW wave impedance is Z0. From now on, the magnetic intensity H will be replaced
with

H =Z0H (40)

This measures the magnetic field in terms of the electric field that would be associated with it in free-
space [4].

This also helps simplify frequently used equations. For example, Faraday’s and Ampere’s equations
for a plane wave traveling in the ±z direction (28, 29, 30) are now

∂Ey

∂z
= i kHx

∂H y

∂z
= −i k

ε0
Dx (41)

∂Ex

∂z
=−i kH y

∂Hx

∂z
= i k

ε0
D y (42)

Hz = 0 Dz = 0 (43)
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Also, the wave impedance relationships are simplified. For example, eqn. 34 is now

Ex

H y
= 1

n
(44)

4.3.3 magnetized plasma

PPW solutions to Faraday’s and Ampere’s eqns. 41, 42, and 43, using the results from eqn. 38 give

nEy =−Hx nH y = 1

ε0
Dx (45)

nEx =H y nHx =− 1

ε0
D y (46)

Hz = 0 Dz = 0 (47)

However, from section 4.2.2 the spatial components of D each depend on all three spatial components
of E because n is a tensor. Hence, the wave equation for Ey derived from the left equation of 45 and the
right equation of 46 is not independent of the wave equation for Ex derived from the right equation
of 45 and the left equation of 46. This means that the polarization states of the PPW solutions will be
restricted.

Instead of proceeding to calculate each wave equation, the characteristics of PPW’s in a magne-
tized plasma are more clearly understood in terms of their individual polarization states. Consider a
+z directed PPW in a magnetized plasma. By symmetry, the x and y axes can be rotated about the z
axis such that the magnetic field, and hence the vector Y lies in the x − z plane at an angle θ to the z
axis. The direction cosines for Y are then

lx = sinθ, ly = 0, lz = cosθ (48)

Under the PPW assumption, eqn. 47, the z component of the displacement is

Dz = ε0Ez +Pz = 0 (49)

The z component of E is found from the constituitive relation, eqn. 23, and eqn. 49 becomes

(1−X )Pz = i Y sinθPy (50)

where Y = |Y|. The polarization state of a z directed PPW can be written in several equivalent forms
using Faraday’s and Ampere’s equations along with the definition of the displacement

ρ = Ey

Ex
= − Hx

H y
= D y

Dx
= Py

Px
(51)

To calculate ρ, divide the y component by the x component of eqn. 23 and use eqns. 51 and 50 [5]

ρ =
1
2 i Y sin2θ ± [1

4 Y 2 sin4θ+cos2θ(1−X )2
]1/2

(1−X )cosθ
(52)

Showing that only two PPW’s can exist, with polarization states defined above. Thus, any plane wave
in a magnetized plasma with an arbitrary polarization state can be resolved into two PPW’s with po-
larizations specified by eqn. 52 with different relative phases and magnitudes. However, unlike the

12



non-magnetized plasma PPW’s, these PPW’s will have different refractive indices, where each one is a
root of the magnetized plasma CPDR. To show this, start by eliminating Hx and H y in eqns. 45 and 46

Dx = ε0n
2Ex D y = ε0n

2Ey (53)

and these are the same as for a non-magnetized plasma. However, Ez = 0 for PPW’s in a non-magnetized
plasma (from eqn. 30 and 17) whereas Ez 6= 0 for PPW’s in a magnetized plasma (from eqn. 30 and
26). Use Dx , and D y from eqn. 53 in the displacement field eqn. 10 to get

Px = ε0(n2 −1)Ex Py = ε0(n2 −1)Ey (54)

Now substitute these into the x component of eqn. 23 and divide that by Px using ρ = Py /Px [5, 4].
This results in the expression

X

n2 −1
=−1− iρY cosθ (55)

upon re-arranging, the equation for the refractive index becomes

n2 = 1− X

1+ iρY cosθ
(56)

Substituting the expression for ρ from eqn. 52, the equation for the refractive index is

n2 = 1− X (1−X )

1−X − 1
2 Y 2 sin2θ± [1

4 Y 4 sin4θ+Y 2 cos2θ(1−X )2
]1/2

(57)

which is the well known Appleton-Hartree magnetized CPDR [4, 5, 1, 9]. For reference, if electron
collisions are included in the derivation, the Appleton-Hartree magnetized CPDR is

n2 = 1− X

1− i Z −
1
2 Y 2 sin2θ

1−X − i Z
±

[
1
4 Y 4 sin4θ

(1−X − i Z )2
+Y 2 cos2θ

]1/2
(58)

where the quantity Z includes the collision frequency for electrons, ν, and the wave frequency

Z = ν

ω
(59)

4.3.4 magnetized plasma PPW polarization relations

Eqn. 55 can be rearranged to give the expression for ρ corresponding to each PPW in a magnetized
plasma

ρ = Ey

Ex
=

1+ X

n2 −1
−i Y cosθ

(60)

where now n takes one of its two values specified in Eqn. 57 (for a collisionless plasma). A nonzero
wave electric field component in the direction of propagation can also exist in a plasma. This field
can also be specified in a polarization ratio expression, say Q. Take the z-component of eqn. 23 (recall
that B0 lies in the x − z plane such that ly = 0). From this equation, the expressions for Px ,Py , and
Pz are substituted using the definition of the displacement field, eqn. 10, and equations 54 and 49
respectively. This gives

Q = Ez

Ey
= −i Y sinθ(n2 −1)

1−X
(61)
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4.4 summary

Any plane wave in a homogeneous medium can be decomposed into component PPW’s.
In a homogeneous, isotropic medium an arbitrary plane wave can be decomposed into two lin-

early polarized PPW’s where the E-field of one will be perpendicular to, and independent of, the E-
field of the other. Each wave sees the same refractive index.

In a homogeneous, non-isotropic magnetized plasma medium, the two component PPW’s are the
two solutions to the magnetized CPDR. Each wave’s polarization state will be given by one of the forms
of eqn. 52. Furthermore, each wave will see a different refractive index.

The usefulness of PPWs in magnetized plasma is now evident in that the mode contribution to an
arbitrary propagating plane wave is found by resolving it into its component PPWs. Also, PPW’s see
a constant wave impedance Z in their direction of travel. This is very helpful when matching E and
H fields across boundaries according to Snell’s law using Ampere’s and Faraday’s equations 45, 46,
and 47.

5 wave incidence at the bottom of the ionosphere

The initial wave will have field components relative to a given coordinate system. The relative strength
and phase of each component in the reference coordinate system will define the wave’s initial po-
larization. However, once the field is incident on the ionospheric underside, a judicious coordinate
transformation will help in specifying the electric field polarization as it enters the ionosphere. This
transform will have a principal axis normal to the vacuum/plasma boundary.

The magnetized plasma in the ionosphere will decompose each frequency component into two
modes, and each of those components will suffer different dispersive effects within each mode. It
is therefore advantageous to work in the frequency domain and transform back to the time domain
once the fields have been solved.

Consider an EM plane wave incident at the bottom of the ionosphere. It is necessary to find the
portion of the wave fields that cross the boundary as well as reflect back. Furthermore, it is required
to determine the portion of each spatial component of the incident field that goes into each of the two
propagating modes in a magnetized plasma.

The vacuum/plasma boundary will be treated in a local rectilinear geometry. Coordinate rotations
at the point of interface serve to greatly simplify calculation of the wave field’s propagation across the
boundary. In order to better illustrate the situation, a rotation where the incident wave and magnetic
field are co-planar with a principle axis plane will be introduced. From there, the general case of
oblique wave incidence and magnetic field orientation will be solved.

The advantages of this approach are due to the fact that a propagating (n pure real) EM wave will
refract in the magnetic meridian plane [4, 9], that is, the plane formed by the magnetic field (or vector
Y) and the incident wave normal S in a collisionless, homogeneous, magnetized plasma.

This treatment of the vacuum/ionosphere boundary is equivalent to assuming a plane stratifica-
tion of vacuum/plasma/vacuum. A tool of particular importance to this type of problem is the Booker
quartic [5, 4, 10, 11, 12], which will be introduced first.

5.1 plane stratified media and the Booker quartic

A magnetized plasma occupies the volume z ≥ 0 as shown in fig. 4. An EM plane wave S is incident
on this plasma half-space from below (z < 0) and makes an angle θi with the z axis in x − z plane.
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The magnetic field vector Y is completely oblique with respect to the x, y , and z axes, and is defined
according to its direction cosines l ,m,n as

Y = Y
(
l x̂ +mŷ +nẑ

)
(62)

where
l = cosα m = cosβ n = cosγ (63)

and Y = |Y|. Likewise, S is defined as

S = S
(
sinθi x̂ +0ŷ +cosθi ẑ

)
(64)

Figure 4: Geometry for a plane wave S incident from below on a plasma half-space defined by the volume z ≥ 0. S is in

the x − z plane and Y is oblique.

Part of S will be transmitted across the plasma boundary and refract into a fast and slow mode, say
Sa and Sb. These two waves will refract in the S−Y, or magnetic meridian, plane at angles θa and θb

with respect to the vertical (which is still the ẑ axis in the S−Y plane), and will see refractive indices
na and nb . The refractive index on the vacuum side is 1.

Snell’s law for the incident wave and either of the refracted waves is

sinθi = na sinθa = nb sinθb (65)

In what follows, the derivation applies to each of the refracted waves, so the a,b subscripts will be
dropped and only one considered

sinθi = nsinθ (66)

Both n and θ are unknown, but the product nsinθ is known from eqn. 66. Let

q = ncosθ (67)
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Figure 5: Graphical representation Snell’s law as it applies to the relationship between n, q , the refraction angle θ, and

the incident angle θi .

and consider n as a vector ( of magnitude |n|) inclined at an angle θ to the vertical with a horizontal
component sinθi and a vertical component q , as shown in fig. 5.

It is clear that if q can be found, then n and θ are known from geometrical relationships

n2 = q2 + sin2θi tanθ = sinθi

q
(68)

and therefore the task at hand is to solve for q . For convenience, let

S = sinθi C = cosθi (69)

where S is not associated with the wave normal vector S. Inside the ionosphere, the refracted wave
will have direction cosines (sinθ, 0, cosθ) in the S−Y plane. Using equations 68 and fig. 5, these
direction cosines can be written as

S√
q2 +S2

, 0,
q√

q2 +S2
(70)

The cosine of the angle between the refracted wave in the plasma and the vector Y is, from eqns. 62
and 70,

cosΨ= l S +qn√
q2 +S2

(71)

(recall that n is the direction cosine of Y with the z axis, and n is the refractive index). Thus the com-
ponent of Y in the direction of the refracted wave normal is

YL = Y
l S +qn√

q2 +S2
(72)

Eqns. 68 and 69 show that
n2 −1 = q2 −C 2 (73)

From this, the Appleton-Hartree magnetized CPDR, eqn. 58, can be written as

U −
1
2 Y 2

T

U −X
+ X

q2 −C 2
=

√
1
4 Y 2

T

(U −X )2
+Y 2

L (74)
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where U = 1− i Z , YT = Y sinθ, andYL = Y cosθ. If both sides of this equation are squared, the term
1
4 Y 2

T / (U − X )2 is subtracted out, the resulting equation is multiplied by U − X , and the relation Y 2
T =

Y 2 −Y 2
L along with eqn. 72 is used, the result is a quadratic equation in q [5, 4]

F (q) ≡αq4 +βq3 +γq2 +δq = ε= 0 (75)

where

α = U (U 2 −Y 2)+X (n2Y 2 −U 2) (76)

β = 2lnSX Y 2 (77)

γ = −2U (U −X )(C 2U −X )+2Y 2(C 2U −X )+X Y 2(1−C 2n2 +S2l 2) (78)

δ = −2C 2l nSX Y 2 (79)

ε = (U −X )(C 2U 2 −X )2 −C 2Y 2(C 2U −X )− l 2S2C 2X Y 2 (80)

This equation is known as the Booker quartic [10, 11, 4, 5]. It gives four values of q , two upgoing (up
from the x−y plane with a +z component), and two downgoing waves (down from the x−y plane with
a -z component). The two upgoing waves will be the two refracted waves in the plasma, and using
eqn. 68, they will give na,b and θa,b . Collisional effects are not included in this report (Z → 0,U → 1);
therefore, to find the solutions of q that correspond to up- or downgoing waves, give the Z term
(eqn, 59 ) a very small non-zero value. The solutions for q that have a negative imaginary part will cor-
respond to upgoing waves [4]. Note that for vertical incidence, S = 0 and C = 1, q2 = n2 and the Booker
quartic reduces to the Appleton-Hartree equation (eqn. 57, or eqn. 58 if collisions are included). It
should be evident by now that the Booker quartic is another form of the magnetized CPDR, but one
that includes the restrictions of Snell’s law for stratified media. It is extremely helpful for solving wave
fields in situations that involve a stratification, and will be used throughout this report.

5.2 case I: magnetic meridian plane along principal axes

Here, the incident wave and magnetic field will both be constrained to the x − z plane, as shown in
fig. 6

In this case, the vacuum/plasma interface is the x−y plane, the plasma volume is the region z ≥ 0,
and a plane wave Si is incident from below at an angle θi . It reflects at an angle θr and, due to the
bi-refringent nature of the magnetized plasma, refracts as Sa and Sb at angles θa and θb respectively.
Wave field orientation will be referenced according to the wave normal direction for all waves (Si, Sr,
Sa, and Sb). Direction cosines for the vectors are

Y (l , 0, n) (81)

Si (sinθi , 0, cosθi ) (82)

Sr (sinθr , 0, cosθr ) = (sinθi , 0, −cosθi ) (83)

Sa (sinθa , 0, cosθa) (84)

Sb (sinθb , 0, cosθb) (85)

where θi =π−θr from Snell’s law, and equations 62 and 63 were used in equation 81.
Wave field components will be either along, or perpendicular to, the wave normal direction. The

wave field components along the wave normal direction are assigned the subscript L. Those per-
pendicular to the wave normal direction are further catagorized as parallel to the magnetic meridian
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Figure 6: Geometry for wave and magnetic field co-planar. Note that the y-coordinate points in to the page, and is

different from the vector Y (in orange). The plasma volume is defined by z ≥ 0. The vectors Y, Si, and Sr have direction

cosines (cosα,0,cosγ), (sinθi ,0,cosθi ), and (sinθr ,0,cosθr ); where, by Snell’s law, π−θr = θi . The vectors Sa and Sb have

direction cosines (sinθa ,0,cosθa) and (sinθb ,0,cosθb).

(x − z) plane with a subscript ∥, or perpendicular to that plane in the y direction with a y subscript.
For example, from eqn. 1, the polarization state of the incident wave in Fig. 6 is

ρ =
E i

y

E i
∥

(86)

and the relationship between the E and H components is given by Faraday’s law, on the left side of
eqns. 45 and 46,

E i
∥

H i
y

=−
E i

y

H i
∥
= 1

n
(87)

where, in vacuum, n = 1. Also note that in vacuum, by definition, a plane wave will not have an
electrostatic, or longitudinal, component. Therefore, there is no EL component in either the incident
or reflected waves, while one does exist for the two refracted waves in the plasma.

With the above assumptions, the incident, reflected, and transmitted fields can now be character-
ized using the coordinate system in fig. 6.
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5.2.1 incident fields

The components of the incident wave fields are

H i
x =−H i

∥ cosθi E i
x = E i

∥ cosθi (88)

=−E i
y cosθi

H i
y =H i

y E i
y = E i

y (89)

= E i
∥

H i
z =H i

∥ sinθi E i
z =−E i

∥ sinθi (90)

=−E i
y sinθi

where Faraday’s law, eqn. 87, was used in vacuum (n= 1) to relate the H and E fields.

5.2.2 reflected fields

The components of the reflected wave fields are

H r
x =H r

∥ cosθi E r
x =−E r

∥ cosθi (91)

= E r
y cosθi

H r
y =H r

y E r
y = E r

y (92)

= E r
∥

H r
z =H r

∥ sinθi E r
z =−E r

∥ sinθi (93)

=−E r
y sinθi

where again Faraday’s law, eqn. 87, was used in vacuum (n = 1) to relate the H and E fields, and
θr =π−θi from Snell’s law.

5.2.3 transmitted fields

Above the vacuum/plasma interface, the wave will refract into fast and slow mode components - say
mode a and mode b. Each mode will have spatial field components that must be accounted for, as
in fig. 6. There will also be longitudinal (along the wave normal direction) E-field components in the
plasma. The polarization relations, equations 60 and 61, for the parallel and longitudinal (magnetic
meridian plane) E-field components can be used to relate them to the Ey component for each mode.

For this geometry, where the plasma wave is oblique in the magnetic meridian plane instead of
traveling only in the z-direction, equations 60 and 61 are re-written as

ρ j =
E j

y

E j
∥
=

1+ X

n2
j −1

−i Y j
L

Q j =
E j

L

E j
y

=
−i Y j

T (n2
j −1)

1−X
(94)
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where Y j
L and Y j

T are the components of Y parallel and perpendicular to the wave normal S j respec-
tively

Y j
L = Y

(
l sinθ j +n cosθ j

)
(95)

Y j
T = Y

(
l cosθ j −n sinθ j

)
(96)

n j and θ j are the index of refraction and refractive angle found from the Booker quartic for an upward
propagating wave, and j = a,b.

With these definitions, the transmitted fields for each mode are

H
j

x =−H
j
∥ cosθi E j

x = E j
L sinθ j +E j

∥ cosθ j (97)

=−n j E j
y cosθ j =−Q j E j

y sinθ j + 1

ρ j
E j

y cosθ j

H
j

y = n j E j
∥ E j

y = E j
y (98)

= n j

ρ j
E j

y

H
j

z =H
j
∥ sinθ j E j

z = E j
L cosθ j −E j

∥ sinθ j (99)

= n j E j
y sinθ j =−Q j E j

y cosθ j − 1

ρ j
E j

y sinθ j

5.2.4 continuity of tangential fields across boundary

At this point in the calculation, the total tangential fields just below and just above the vacuum/plasma
boundary must be matched. That is, the x and y field components must be equated at the z = 0 plane:

Ex −→ E i
x +E r

x = E a
x +E b

x

Ey −→ E i
y +E r

y = E a
y +E b

y

Hx −→ H i
x +H r

x =H a
x +H b

x

H y −→ H i
y +H r

y =H a
y +H b

y (100)

Using equations 88 - 90, 91 - 93, and 97 - 99, results in(
E i
∥−E r

∥
)

cosθi =
E a

y

ρa
cosθa −QaE a

y sinθa +
E b

y

ρb
cosθb −QbE b

y sinθb (101)

E i
y +E r

y = E a
y +E b

y (102)(
E r

y −E i
y

)
cosθi =−qaE a

y −qbE b
y (103)

E i
∥+E r

∥ =
na

ρa
E a

y +
nb

ρb
E b

y (104)

where the definition of q from eqn. 67 was used in eqn. 103.
This is a system of four equations with four unknowns - E r

∥ ,E r
y ,E a

y , and E b
y . All other field quantities

are found from the local plasma conditions, Booker quartic, and the polarization relations (94).
The method for solving these equations will be put off until the next section, where the magnetic

meridian plane will not be constrained to lie along principal axes.

20



5.3 case II: magnetic meridian plane oblique (general case)

Section 5.2 outlined the calculation for propagating the incident EM wave fields across the vacuum/plasma
boundary. However, the magnetic meridian plane and vacuum/plasma interface plane were con-
strained to be along principal axes of the coordinate system. This was done to illustrate the process
of finding the transmitted and reflected wave fields without over complicating the math. With that
knowledge, the more general case of a completely oblique magnetic field vector relative to the inci-
dent wave can be solved.

5.3.1 orientation at the interface

The issue is basically coordinate system rotation. Figure 7 shows the general case for oblique inci-
dence and an obliquely oriented magnetic field vector. In section 5.2 it was assumed that the in-
cident wave normal and magnetic field vectors were co-planar along principal axes, with the vac-
uum/plasma boundary forming the resulting right-handed coordinate system. In this case, that as-
sumption is dropped and a different coordinate rotation will be used to facilitate calculation of the
transmitted and reflected fields.

Figure 7: The orientation for oblique incident and refracted waves in a collisionless, magnetized plasma. S is incident

from below the vacuum/plasma interface (x−y plane). It will refract into two modes Sa and Sb (assuming neither is cutoff)

in the S−Y plane.

Orientation at the point of incidence can always be rotated into the geometry of Fig. 8(a). Here
the vector Y is oblique, and the refracted part of S lies in a principal axis plane perpendicular to the
vacuum/plasma interface plane. This will be labeled the unprimed coordinate system. In section 5.2,
this system was rotated until the magnetic field and wave normal vectors were coplanar along princi-
pal axes, resulting in the orientation of figure 6. While this resulted in a more straightforward way to
illustrate the problem, a different coordinate rotation will result in a ‘cleaner’ problem to be solved.
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This is shown in figure 8(b). Here, the new primed coordinate system has S along the z axis, nor-
mal to the vacuum/plasma interface plane, with Y in the x−z plane. Solutions for the reflected and
transmitted fields can then be rotated into the original geometry. Note that the incident, transmitted,
and reflected angles will all be zero in this coordinate system. Also, the coordinate rotation will be
necessary for each refracted mode, since they will refract at different angles.

Figure 8: Just inside the plasma. Coordinate rotation from oblique unprimed system to final primed system. The

unprimed direction cosines (l ,m,n) are (cosα,cosβ,cosγ) and the refracted angle θ j is known. In the primed coordi-

nate system, (l ,m,n) are (cosα,0,cosβ), and θ j = 0. The direction cosines for S in the unprimed coordinate system are

(l ,m,n) = (sinθ j ,0,cosθ j .)

5.3.2 coordinate rotation matrix

To get from the system of Fig. 8(a) to Fig. 8(b), the 3× 3 coordinate rotation matrix must be found.
Recall that two transformation matrices must be found, one for each mode. For this part, assume a
single mode and drop any associated subscripts. All vector quantities will be associated with locations
inside the plasma, thus S will refer to the refracted part of the incident wave.

Let â3 be a unit vector in the direction of S in the unprimed coordinate system.

â3 = 1 · (sinθ,0,cosθ) (105)

Now form a unit vector â2 perpendicular to the S−Y plane. Start by forming the vector −→a2 from the
cross product of â3 and Y.

−→a2 = â3 ×Y

= Y (−m cosθ, l cosθ−n sinθ, m sinθ) (106)
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Its magnitude is∣∣−→a2
∣∣= Y

(
m2 cos2θ+ l 2 cos2θ+n2 sin2θ−2l n cosθ sinθ+m2 sin2θ

)1/2

= Y
[
1− (l sinθ+n cosθ)2]1/2

= Y G (107)

where the identity for direction cosines, l 2 +m2 +n2 = 1, was used. The unit vector â2 is therefore

â2 =
−→a2∣∣−→a2

∣∣
=

(
−m cosθ

G
,

l cosθ−n sinθ

G
,

m sinθ

G

)
(108)

To complete the right handed primed coordinate system, the unit vector â1 is found from the cross
product of â2 and â3

â1 = â2 × â3

= l cosθ−n sinθ

G
cosθ,

m

G
,

l cosθ−n sinθ

G
(−sinθ) (109)

The primed coordinate system has unit vectors â1, â2, â3 corresponding to x̂ ′, ŷ ′, ẑ ′ (see fig-
ure 8), from which the rotation matrix, M, to transform from one system to the other can be con-
structed [13]. Thus, for some vector −→r in the original coordinate system

−→r ′ =M ·−→r =
 ˆa1x ˆa1y ˆa1z

ˆa2x ˆa2y ˆa2z

ˆa3x ˆa3y ˆa3z

 ·−→r (110)

and, likewise −→r =M−1 ·−→r ′ (111)

where the matrixM is

M=



l cosθ−n sinθ

G
cosθ

m

G

l cosθ−n sinθ

G
(−sinθ)

−m cosθ

G

l cosθ−n sinθ

G

m sinθ

G

sinθ 0 cosθ


(112)

The quantites G and θ are mode specific, and thus a rotation matrix for each mode must be calcu-
lated in order to transform the fields of each mode from the primed to unprimed coordinate systems
(and vice versa).

θa ,Ga −→Ma

θb ,Gb −→Mb

Table 1 lists the quantities that are invariant to coordinate rotations. They depend on local plasma
density and magnetic field values only. This is very helpful when constructing the rotation matrix for
each mode.
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Quantity Equation(s)

q j 75
n j 68
θ j 68

Y j
L 72, 95

Y j
T 96
ρ j 94
Q j 94

Table 1: Quantities that are invariant to coordinate rotation.

The solution for the transmitted fields in this case can now be found as before in section 5.2.3,
but with an extra step. Using figure 9 for reference, write down the form of the transmitted fields for
each mode in the primed coordinate system. Note that in this coordinate system, the transmitted
wave normal angle for each mode zero; also, the subscript ∥ is assigned to the x direction. Next, rotate
them into the unprimed coordinate system via equation 111 - this is the new step. The tangential
components of these rotated fields are equated to the tangential components of the incident and
reflected fields using Snell’s law. This will generate a new set of equations that are solved to give the
final form of the transmitted fields for each mode.

Figure 9: Transmitted fields just above the vacuum/plasma interface - primed coordinate system.

5.3.3 incident and reflected fields

The incident and reflected wave fields for this case are the same as those found in section 5.2.1 equa-
tions 88, 89, 90; and section 5.2.2, equations 91, 92, 93.
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5.3.4 transmitted fields

The transmitted fields in the primed coordinate system are (dropping the ’ notation for convenience)

H
j

x =−H
j
∥ E j

x = 1

ρ j
E j

y (113)

=−n j E j
y

H
j

y = n j E j
∥ E j

y = E j
y (114)

= n j

ρ j
E j

y

H
j

z = 0 E j
z = E j

L (115)

=−Q j E j
y

5.3.5 continuity of tangential fields at the interface

The first order of business is to rotate the transmitted fields to the unprimed coordinate system. Let
m represent the inverse of the matrixM

m=M−1 (116)

Then in the plasma

E j =m ·E′ j (117)
−→
H j =m ·−−→H ′ j (118)

and the equations for the plasma wave fields in the unprimed coordinate system, for each mode, are
(dropping the j superscript) Hx

H y

Hz

=
m11 m12 m13

m21 m22 m23

m31 m32 m33

 ·
H ′

x
H ′

y

H ′
z

 (119)

Ex

Ey

Ez

=
m11 m12 m13

m21 m22 m23

m31 m32 m33

 ·
E ′

x
E ′

y

E ′
z

 (120)

This gives a system of six equations in six unknowns. The number of unknowns can be reduced
significantly using the polarization relations for the E-fields (equations 94) and Faraday’s law (equa-
tion 87) for PPW’s traveling in an anisotropic homogeneous medium. Furthermore, the parameters
used in those equations are invariant to coordinate system rotation (see Table 1).

E ′ j
x = 1

ρ j
E ′ j

y E ′ j
z =−Q j E ′ j

y (121)

H ′ j
x =−n j E ′ j

y H ′ j
y =

n j

ρ j
E ′ j

y H ′ j
z = 0 (122)
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Using the above relations and the equations in Table 1, the wave fields in the plasma for each mode

can be found in the unprimed coordinate system as functions of the unknown field quantity E ′ j
y .

E j
x =

[
m

j
11

(
1

ρ j

)
+ m j

12 − m j
13Q j

]
E ′ j

y (123)

E j
y =

[
m

j
21

(
1

ρ j

)
+ m j

22 − m j
23Q j

]
E ′ j

y (124)

E j
z =

[
m

j
31

(
1

ρ j

)
+ m j

32 − m j
33Q j

]
E ′ j

y (125)

H
j

x =
[
−m j

11n j + m j
12

(
n j

ρ j

)]
E ′ j

y (126)

H
j

y =
[
−m j

21n j + m j
22

(
n j

ρ j

)]
E ′ j

y (127)

H
j

z =
[
−m j

31n j + m j
32

(
n j

ρ j

)]
E ′ j

y (128)

Now the tangential incident, reflected, and transmitted fields in the unprimed coordinate system
for this case can be matched at the vacuum/plasma boundary via Snell’s law (see equations 100).
Specifically, the incident tangential fields given in equations 88 and 89; the reflected tangential fields
from equations 91 and 92; and the transmitted fields for each mode from equations 123, 124, 126,
and 127. For completeness, they are listed below

incident fields

H i
x =−E i

y cosθi E i
x = E i

∥ cosθi (129)

H i
y = E i

∥ E i
y = E i

y (130)

H i
z =−E i

y sinθi E i
z =−E i

∥ sinθi (131)

reflected fields

H r
x = E r

y cosθi E r
x =−E r

∥ cosθi (132)

H r
y = E r

∥ E r
y = E r

y (133)

H r
z =−E r

y sinθi E r
z =−E r

∥ sinθi (134)
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transmitted fields

E a
x =

[
m

a
11

1

ρa
+ ma

12 − ma
13Qa

]
E ′a

y = A1E ′a
y (135)

E b
x =

[
m

b
11

1

ρb
+ mb

12 − mb
13Qb

]
E ′b

y = B1E ′b
y (136)

E a
y =

[
m

a
21

1

ρa
+ ma

22 − ma
23Qa

]
E ′a

y = A2E ′a
y (137)

E b
y =

[
m

b
21

1

ρb
+ mb

22 − mb
23Qb

]
E ′b

y = B2E ′b
y (138)

E a
z =

[
m

a
31

1

ρa
+ ma

32 − ma
33Qa

]
E ′a

y = A3E ′a
y (139)

E b
z =

[
m

b
31

1

ρb
+ mb

32 − mb
33Qb

]
E ′b

y = B3E ′b
y (140)

H a
x =

[
−nam

a
11 + na

ρa
m

a
12

]
E ′a

y = A4E ′a
y (141)

H b
x =

[
−nbm

b
11 + nb

ρb
m

b
12

]
E ′b

y = B4E ′b
y (142)

H a
y =

[
−nam

a
21 + na

ρa
m

a
22

]
E ′a

y = A5E ′a
y (143)

H b
y =

[
−nbm

b
21 + nb

ρb
m

b
22

]
E ′b

y = B5E ′b
y (144)

H a
z =

[
−nam

a
31 + na

ρa
m

a
32

]
E ′a

y = A6E ′a
y (145)

H b
z =

[
−nbm

b
31 + nb

ρb
m

b
32

]
E ′b

y = B6E ′b
y (146)

To proceed, let C = cosθi and S = sinθi , and equate the x and y components of the E and H fields.
This results in the following system of four equations in four unknowns

C 0 A1 B1

0 −1 A2 B2

0 −C A4 B4

−1 0 A5 B5


·



E r
∥

E r
y

E ′a
y

E ′b
y


=



C E i
∥

E i
y

−C E i
y

E i
∥


(147)

This system is solved using Cramer’s rule [14], giving the reflected wave components, and the y com-
ponent of the two refracted modes in the primed coordinate system.
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The results are summarized below. The determinant of the 4×4 coefficient matrix in Eqn. 147 is

∆=C 2 (A2B5 −B2 A5)+C (A5B4 − A4B5 +B1 A2 − A1B2)+ A1B4 −B1 A4 (148)

To solve for the first variable in the 4×1 column matrix on the left hand side of equation 147 (E r
∥ ),

substitute the right hand side 4×1 column matrix into the first column of the 4×4 coefficient matrix.
This gives a resultant matrix from which the determinant must be found

∆1 =

∣∣∣∣∣∣∣∣∣
C E i

∥ 0 A1 B1

E i
y −1 A2 B2

−C E i
y −C A4 B4

E i
∥ 0 A5 B5

∣∣∣∣∣∣∣∣∣ (149)

It is most convenient expand along the second column to get

∆1 =
[
C 2E i

∥ (A2B5 − A5B2)+C E i
∥ (A1B2 −B1 A2 + A5B4 − A4B5) (150)

+2C E i
y (B1 A5 − A1B5)+E i

∥ (B1 A4 − A1B4)
]

(151)

Then E r
∥ is [14]

E r
∥ =

∆1

∆

= 1

∆

[
C 2E i

∥ (A2B5 − A5B2)+C E i
∥ (A1B2 −B1 A2 + A5B4 − A4B5)

+2C E i
y (B1 A5 − A1B5)+E i

∥ (B1 A4 − A1B4)
]

(152)

For E r
y , it is more convenient to expand along the first column of the resultant coefficient matrix

∆2 =

∣∣∣∣∣∣∣∣∣
C C E i

∥ A1 B1

0 E i
y A2 B2

0 −C E i
y A4 B4

−1 E i
∥ A5 B5

∣∣∣∣∣∣∣∣∣ (153)

E r
y =

∆2

∆

= 1

∆

[
C 2E i

y (A2B5 − A5B2)+C E i
y (A4B5 −B4 A5 + A2B1 − A1B2)

+2C E i
∥ (B4 A2 − A4B2)+E i

y (B1 A4 − A1B4)
]

(154)

E ′a
y and E ′b

y are also more easily calculated by using the determinants found from expanding along
the first column of their respective resultant matrices

∆3 =

∣∣∣∣∣∣∣∣∣
C 0 C E i

∥ B1

0 −1 E i
y B2

0 −C −C E i
y B4

−1 0 E i
∥ B5

∣∣∣∣∣∣∣∣∣ ∆4 =

∣∣∣∣∣∣∣∣∣
C 0 A1 C E i

∥
0 −1 A2 E i

y

0 −C A4 −C E i
y

−1 0 A5 E i
∥

∣∣∣∣∣∣∣∣∣ (155)
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E ′a
y = ∆3

∆

= 2

∆

[
C 2

(
E i

y B5 −E i
∥B2

)
+C

(
E i
∥B4 +E i

y B1

)]
(156)

E ′b
y =

∆4

∆

= 2

∆

[
C 2

(
E i
∥A2 −E i

y A5

)
−C

(
E i
∥A4 −E i

y A1

)]
(157)

The polarization relations, equations 94, will give the other wave field spatial components for each
mode in the primed coordinate system. For the wave field components in the unprimed system, the
E-fields are given in equations 135 - 140, and the H -fields are given in equations 141 - 146.

5.3.6 conservation of energy flux perpendicular to the boundary

Inherent loss mechanisms in this system have been assumed to be negligible. Basically, electron col-
lisions have been neglected. This is a very good assumption for the frequencies pertinent to the situ-
ations addressed by the calculations in this report. This also allows a method to check the validity of
the refracted wave field calculations.

The energy flux in the wave incident on a boundary between two lossless media, perpendicular to
the interface boundary, is conserved [4, 5]. In other words, the total Poynting vectors in the direction
perpendicular to the interface boundary should be equal in magnitude (incident power minus the
reflected power should equal the transmitted power) at the boundary.

The Poynting vector, in the notation adopted for this report, is [4]

P = 1

2η0
Re

{
E×−−→

H ∗
}

(158)

The components of this vector perpendicular to the interface plane in the unprimed coordinate sys-
tem are then

Pz = 1

2η0
Re

{
ExH ∗

y −EyH ∗
x

}
(159)

Using this, the incident, reflected, and transmitted (both modes) components can be calculated and
checked for correctness.

P i
z −P r

z = P a
z +P b

z (160)

5.4 special cases

In section 5.3, solutions for the refracted wave fields for each birefringent mode in the magnetized
ionospheric plasma are found, along with the reflected fields. These solutions were found by rotating
into an advantageous coordinate system, allowing the problem to be recast such that a straightfor-
ward, and easier, path to the solution was demonstrated. There are certain special cases where no
coordinate rotation is necessary, or where the rotation matrix M would include some infinite mem-
bers of the form 1/0. In these cases, the problem must be cast differently.
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5.4.1 case 1: incident wave perpendicular and magnetic field horizontal at interface plane

In this situation, the incident wave vector S lies along the z-axis, and the magnetic field vector Y lies
along the x-axis, as shown in figure 10.

Figure 10: Perpendicular wave incidence along ẑ with θi = θr = θO,X = 0. Y = Y ·(1,0,0) and S = S ·(0,0,1). On the plasma

side: Red = ordinary mode, Blue = extraordinary mode.

The incident, reflected, and transmitted angles are all zero. The term G in equation 107 becomes
zero, and many terms in the coordinate rotation matrix in equation 112 become infinite. Thus, the
problem must be recast in order to solve for the transmitted and reflected wave fields. Indeed, the
situation as illustrated in Fig. 10 shows that there is no need for a coordinate rotation.

Notice also that this situation involves wave propagation in the plasma exactly perpendicular to
the magnetic field. Here the two modes that can propagate in the plasma are identified as two princi-
pal modes since the wave normal vector S and magnetic field vector Y are exactly perpendicular [2, 1]
(the other two principal modes identified when S and Y are exactly parallel or anti-parallel).

The two propagating modes are identified by the orientation of their E-field with respect to the
magnetic field vector Y. The first mode (the fast wave root of the CPDR, equation 57), called the
ordinary mode, has its E-field aligned parallel (or anti-parallel) to the magnetic field vector Y. This is
also the same mode that propagates in an unmagnetized plasma [1, 2, 3]. This particular mode does
not have an electrostatic component, that is, EL → 0. The second mode (the slow wave root of the
CPDR, equation 57) is identified as the extrordinary mode, and has its E-field aligned perpendicular
to Y. This mode has an electrostatic component along the wave normal direction. These two waves
are illustrated in Fig. 10.

The use of reflection and transmission coefficients at the vacuum/plasma interface was not neces-
sary in section 5.3 because both reflected and transmitted fields were included in the Cramer’s method
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solution. Any spatial wave field component in the incident wave can contribute to both modes on the
plasma side, and the Cramer’s method solution is more straightforward than implementing the nec-
essary reflection and transmission coefficients [4]. For reference, there are eight required coefficients,
given in Table 2.

incident field component contributes to coefficient

∥ reflected ∥ ∥R∥
⊥ reflected ⊥ ⊥R⊥
∥ reflected ⊥ ∥R⊥
⊥ reflected ∥ ⊥R∥
∥ transmitted mode a ∥Ta

∥ transmitted mode b ∥Tb

⊥ transmitted mode a ⊥Ta

⊥ transmitted mode b ⊥Tb

Table 2: The 8 field coefficients required to solve for the reflected and transmitted fields in section 5.3 if Cramer’s method

is not employed.

However, in this case there is no cross-coupling in reflection or transmission. One spatial com-
ponent of the incident wave field will only contribute to one mode on the plasma, not both; and
reflection in one polarization will not contribute to a different polarization. For example E i

∥ can only

drive the ordinary mode, E i
y can only drive the extraordinary mode, and they will only reflect into their

respective polarizations. It is straightforward to show that, for this case,

ρa → ρO = 0 ρb → ρX =∞ (161)

Qa →QO = 0 Qb →QX 6= 0 (162)

na → nO nb → nX (163)

Furthermore, there are only two nonzero reflection coefficients [4]

∥R⊥ = 0 ⊥R∥ = 0 (164)

∥R∥ = na −1

na +1
⊥R⊥ = 1−nb

1+nb
(165)

With these definitions the incident, reflected and transmitted wave fields can be listed, referring to
figure 10, and using Faraday’s law from equation 87.

incident fields

H i
x =−E i

y E i
x = E i

∥ (166)

H i
y = E i

∥ E i
y = E i

y (167)

H i
z = 0 E i

z = 0 (168)

31



reflected fields

H r
x =

(
1−nb

1+nb

)
E i

y E r
x =−

(
na −1

na +1

)
E i
∥ (169)

H r
y =

(
na −1

na +1

)
E i
∥ E r

y =
(

1−nb

1+nb

)
E i

y (170)

H r
z = 0 E r

z = 0 (171)

transmitted fields

Hx =H b
x =−nbE b

y Ex = E a
x (172)

H y =H a
y = naE a

x Ey = E b
y (173)

Hz = 0 Ez = E b
z =QbE b

y (174)

continuity of tangential fields at the interface The sum of the x and y components of the incident
(equations 166, 167) and reflected (equations 169, 170) wave fields is equated to the respective trans-
mitted wave fields (equations 172, 173) resulting in an over determined system of equations with four
equations and two unknowns.

Ex −→ (
1−∥ R∥

)
E i

x = E a
x (175)

Ey −→ (1+⊥R⊥)E i
y = E b

y (176)

Hx −→ (⊥R⊥−1)E i
y =−nbE b

y (177)

H y −→ (
1+∥ R∥

)
E i

x = naE a
x (178)

From these, take one x, and one y component equation and solve for the two unknown wave fields
E a

x and E b
y

E a
x = 2

na +1
E i

x (179)

E b
y = 2

nb +1
E i

y (180)

(181)

Recall, from the right side of equation 174 that the longitudinal component of the transmitted wave
field is

Ez = E b
z = QbE b

y = 2Qb

nb +1
E i

y = − i 2Y (nb −1)

1−X
E i

y (182)

The solutions for H b
x and H a

y can be found from the left side of equations 172 and 173.

H a
y = 2na

na +1
E i

x (183)

H b
x = −2nb

nb +1
E i

y (184)

Now all the transmitted wave fields are specified for this case.
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5.4.2 case 2: incident wave oblique and magnetic field horizontal at interface plane, perpendicu-
lar to incidence plane

In this situation the incident wave is oblique in a plane perpendicular to the magnetic field vector,
which lies in the interface plane. This is shown in Fig. 11. This is basically the same situation as the
first special case, where the plane of incidence is the S−Y plane, except that two coordinate rotations
separate this geometry from that in the first special case. It is evident that the incident wave is again
comprised of pure X and O modes, and will refract into pure X and O modes; where as in special case
1, the mode designations are a →O and b → X .

Solutions for the transmitted and reflected wave fields can be found by rotating this system into
the system from special case 1 and using those field solutions. Here, the primed coordinate system
will be the coordinate system from special case 1.

Figure 11: Oblique wave incidence in the x − z plane. Y = Y · (0,1,0) and S = S · (sinθi ,0,cosθi ).

As before, let C = cosθi and S = sinθi . Transforming from the unprimed to the primed system will
require a rotation about the y-axis by θi , and then a rotation about the z-axis by π/2. The rotation
matrices are [13]

Ry =
C 0 −S

0 1 0
S 0 C

 Rz =
 0 1 0
−1 0 0
0 0 1

 (185)

giving the total rotation matrix

R=Rz ·Ry =
 0 1 0
−C 0 S
S 0 C

 R−1 =
0 −C S

1 0 0
0 S C

 (186)
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such that

E′ =R ·E E =R−1 ·E′ (187)

Now, the transmitted and reflected fields found in special case 1 are the fields in the new primed
system for this situation.

incident fields The incident fields in this case are given by equations 88, 89, and 90.

transmitted fields Transmitted fields from the special case 1 unprimed system are now the fields in
the primed system

H ′
x =H ′b

x =− 2nb

nb +1
E ′i

y E ′
x = E ′a

x = 2

na +1
E ′i

x (188)

H ′
y =H ′a

y = 2na

na +1
E ′i

x E ′
y = E ′b

y =
2

nb +1
E ′i

y (189)

H ′
z = 0 E ′

z = E ′b
z =− i 2Y (nb −1)

1−X
E ′i

y (190)

and need to be rotated into the unprimed system via the inverse rotation on the right side of equa-
tion 187 resulting in

Hx =H a
x =− 2Cna

na +1
E ′i

x Ex = E b
x =− 2C

nb +1
E ′i

y −
i 2SY (nb −1)

1−X
E ′i

y (191)

H y =H b
y =− 2nb

nb +1
E ′i

y Ey = E a
y = 2

na +1
E ′i

x (192)

Hz =H a
z = 2Sna

na +1
E ′i

x Ez = E b
z = 2S

nb +1
E ′i

y −
i 2C Y (nb −1)

1−X
E ′i

y (193)

Notice that the fields from mode a in the primed system (equations 188, 189, 190) rotate into
mode b in the unprimed system (equations 191, 192, 193) and vice-versa.

To fully solve the transmitted fields, the incident fields in the primed system must be expressed in
the unprimed system - where they are known. Again, the inverse rotation on the right side of equa-
tion 187 is used to get

E ′i
x = E i

y (194)

E ′i
y =−C 2E i

∥−S2E i
∥ =−E i

∥ (195)

E ′i
z = SC E i

∥−SC E i
∥ = 0 (196)

The final form of the transmitted fields in the unprimed coordinate system is

Hx =H a
x =− 2Cna

na +1
E i

y Ex = E b
x = 2C

nb +1
E i
∥+

i 2SY (nb −1)

1−X
E i
∥ (197)

H y =H b
y = 2nb

nb +1
E i
∥ Ey = E a

y = 2

na +1
E i

y (198)

Hz =H a
z = 2Sna

na +1
E i

y Ez = E b
z =− 2S

nb +1
E i
∥+

i 2C Y (nb −1)

1−X
E i
∥ (199)
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reflected fields Using the same procedure as above, the reflected fields for this case are

H r
x =−C ·∥ R∥ ·E i

y E r
x =C ·⊥ R⊥ ·E i

∥ (200)

H r
y =−⊥R⊥ ·E i

∥ E r
y =−∥R∥ ·E i

y (201)

H r
z = S ·∥ R∥ ·E i

y E r
z =−S ·⊥ R⊥ ·E i

∥ (202)

where ∥R∥ and ⊥R⊥ are given in equation 165.

5.4.3 case 3: incident wave and magnetic field parallel, oriented perpendicular to interface plane

This case is almost identical to that in section 5.4.1 where the incident, reflected and refracted angles
are all zero, except Y is exactly parallel (ar antiparallel) to S. No coordinate rotation is needed to solve
for the transmitted and reflected fields. However, for this case cross coupling from the incident wave
fields to each of the refracted modes will exist. These two refracted modes are the R (fast root of the
CPDR) and L (slow root of the CPDR) principal modes for EM waves propagating in a magnetized
plasma. These modes are EM waves propagating exactly parallel or antiparallel to Y, and have no
longitudinal component [2, 1, 3]. The wave fields for each mode rotate in a CW (R for Right rotation)
or CCW (L for Left rotation) orientation as observed looking along the B (−Y) direction.

Figure 12: Perpendicular wave incidence along z with θi = θr = θR,L = 0. Y = Y · (0,0,1) and S = S · (0,0,1). On the plasma

side: Red = R mode, Blue = L mode.

The polarization ratios for these waves are

ρa = ρR = − i (203)

ρb = ρL = + i (204)

Qa,b =QR,L = 0 (205)
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which show that the R/L-wave E-fields (E R,L
y ,E R,L

∥ ) are phased by ∓π/2 respectively - as expected for
circular polarization.

The transmitted and reflected wave field solutions can be found using Cramer’s method. Here, the
solutions will be found using only the reflection coefficients and algebra. Recall that cross coupling
between the incident wave fields and both modes can occur. However, the four reflection coefficients
are simplified, and given by [4]

∥R∥ =−⊥R⊥ = 1

2

[
nR −1

nR +1
+ nL −1

nL +1

]
(206)

∥R⊥ = ⊥R∥ = i

[
1

nL +1
− 1

nR +1

]
(207)

Using these, ρR , and ρL , the incident reflected and transmitted fields can now be specified.

incident fields The incident fields are the same as in section 5.4.1, equations 166, 167, and 168.

H i
x =−E i

y E i
x = E i

∥ (208)

H i
y = E i

∥ E i
y = E i

y (209)

H i
z = 0 E i

z = 0 (210)

reflected fields The reflected wave field components are slightly more complicated than in sec-
tion 5.4.1, because now one polarization can reflect into the other

H r
x = ∥R⊥E i

x +⊥R⊥E i
y E r

x =−∥R∥E i
x −⊥R∥E i

y (211)

H r
y = ∥R∥E i

x +⊥R∥E i
y E r

y = ∥R⊥E i
x +⊥R⊥E i

y (212)

H r
z = 0 E r

z = 0 (213)

transmitted fields The transmitted (refracted) fields are specified using the polarization relations
from equation 203, 204, and 205, and Faraday’s law from equation 44

H t
x =−nRρR E R

x −nLρLE L
x E t

x = E R
x +E L

x (214)

H t
y = nR E R

x +nLE L
x E t

y = ρR E R
x +ρLE L

x (215)

H t
z = 0 E t

z = 0 (216)

continuity of tangential fields at the interface As before, the incident and reflected field compo-
nents tangential to the vacuum/plasma interface are equated to their corresponding transmitted
fields.

Ex −→ (
1−∥ R∥

)
E i

x −⊥R∥E i
y = E R

x +E L
x (217)

Ey −→ ∥R⊥E i
x + (1+⊥R⊥)E i

y = ρR E R
x +ρLE L

x (218)

Hx −→ ∥R⊥E i
x + (⊥R⊥−1)E i

y =−nRρR E R
x −nLρLE L

x (219)

H y −→ (
1+∥ R∥

)
E i

x +⊥R∥E i
y = nR E R

x +nLE L
x (220)
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This system of four equations and two unknowns is over determined since the reflected fields have
been expressed in terms of the incident fields and their reflection coefficients. The unknown fields E R

x
and E L

x are solved using back substitution from two of the four equations

E R
x =

E i
x + i E i

y

nR +1
(221)

E L
x =

E i
x − i E i

y

nL +1
(222)

from which the complete set of transmitted fields is found

H t
x =−

(
nR

nR +1
+ nL

nL +1

)
E i

y + i

(
nR

nR +1
− nL

nL +1

)
E i

x E t
x =

E i
x + i E i

y

nR +1
+

E i
x − i E i

y

nL +1
(223)

H t
y =

(
nR

nR +1
+ nL

nL +1

)
E i

x + i

(
nR

nR +1
− nL

nL +1

)
E i

y E t
y =

E i
y − i E i

x

nR +1
+

E i
y + i E i

x

nL +1
(224)

H t
z = 0 E t

z = 0 (225)

6 wave propagation in the ionosphere

Now that the complete set of refracted wave fields has been found, they can be propagated through
the ionosphere with a suitably chosen Ionospheric Transfer Function (ITF).

This report does not cover specific algorithms for propagating the refracted waves through the
ionosphere, that is covered elsewhere [15, 16, 17], but there are a few items worth noting.

First, while the method presented in this report does not propagate each refracted wave through
the ionosphere, the Booker quartic in section 5.1 gives the refracted angles on the plasma side of the
vacuum/plasma interface at the bottom of the ionosphere for each wave component. These angles
are functions of the incident angle, and serve as the starting point for a refraction algorithm. From this
point, the refracted waves can be solved in any number of ways; line of sight, ray trace, and stratified
multi-layer to name a few.

Next, the method presented in this report depends on definite boundaries at the bottom and top of
the ionosphere. This assumption is the cornerstone for solving the refracted fields at the boundaries,
specifically each field’s mode (fast/slow) amplitude.

Lastly, since the frequency band of interest for this report is VHF, the wavelengths involved have
scale lengths which justify the definite boundary assumption.

7 wave incidence at the top of the ionosphere

Consider a wave Si incident at the plasma/vacuum interface on the top of the ionosphere. Here, the
wave is incident from inside the plasma, partially transmits into free space, and reflects back into
the plasma. The wave will actually reflect into two modes because of the birefringent nature of the
magnetized plasma. As before, label the two modes a and b, with the phase velocity of Sa being
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Figure 13: Geometry for wave and magnetic field co-planar at the top of the ionosphere. Note that the y-coordinate

points in to the page, and is different from the vector Y (in orange) which is oblique with direction cosines α,β,γ 6= 0.

The plasma volume is defined by z ≤ 0. Here, the incident wave reflects into two modes (a,b) back into the plasma. The

vectors Y, Si, and Sj have direction cosines (cosα,cosβ,cosγ), (sinθi ,0,cosθi ), and (sinθ j ,0,cosθ j ); where j = a,b.

greater than that of Sb . Actually, the incident wave in this situation is one of the two upward traveling
modes that have refracted from an initial EM wave incident on the ionospheric underside, as shown
in figure 1. Thus, there will be four reflected, two incident and two transmitted waves expected at the
top, as long as neither incident wave has been cut off. It is only necessary to specify the reflected and
transmitted wave components for one incident mode reflecting into two modes, as shown in figure 13;
addition of the second incident, second transmitted, and third and fourth reflected, modes follows by
inspection.

Again, the simpler case of the magnetic meridian plane confined to be along principal axes will
be introduced, following with the fully oblique case. Further, matching of tangential fields at the
plasma/vacuum boundary will be skipped until the section on fully oblique incidence.

7.1 case I: magnetic meridian plane along principal axes

As before, the incident wave and magnetic field are both constrained to the x−z plane. This situation
is shown in figure 13, except that the vector Y will be in the x − z plane instead of totally oblique.
Direction cosines for the vectors are
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Y (l , 0, n) (226)

Si (sinθi , 0, cosθi ) (227)

Sa (sinθa , 0, cosθa) (228)

Sb (sinθb , 0, cosθb) (229)

St (sinθt , 0, cosθt ) (230)

where now
ni sinθi = na sinθa = nb sinθb (231)

Just as in section 5.2, the incident, reflected, and transmitted fields can now be written out. In
what follows, as in section 5.2, Faraday’s law, equation 87, is used to relate the H and E fields.

7.1.1 incident fields

The components of the incident wave fields are

H i
x =−H i

∥ cosθi E i
x = E i

L sinθi +E i
∥ cosθi (232)

=−ni E i
y cosθi

H i
y =H i

y E i
y = E i

y (233)

= ni E i
∥

H i
z =H i

∥ sinθi E i
z = E i

L cosθi −E i
∥ sinθi (234)

=−ni E i
y sinθi

7.1.2 reflected fields

There will be two sets of fields in this case because the wave will reflect back into the plasma. They
will represent the two birefringent modes a,b present in a magnetized plasma. For simplicity, let

φ j =π−θ j (235)

where j = a,b. Then the reflected fields are

H
j

x =H
j
∥ cosφ j E j

x = E j
L sinφ j +E j

∥ cosφ j (236)

= n j E j
y cosφa

H
j

y =H
j

y E j
y = E j

y (237)

= n j E j
∥

H
j

z =H
j
∥ sinφ j E j

z =−E j
L cosφ j −E j

∥ sinφ j (238)

=−n j E j
y sinφ j
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These field components can be further reduced using the polarization relations in equations 94,
but this is not necessary since the full wave field component solutions will not be found until the next
section when fully oblique incidence is considered.

7.1.3 transmitted fields

In this situation, the transmitted fields are in vacuum, and can be written as

H t
x =−H t

∥ cosθt E t
x = E t

∥ cosθt (239)

=−E i
y cosθt

H t
y =H t

y E t
y = E t

y (240)

= E t
∥

H t
z =H t

∥ sinθt E i
z = E i

L cosθi −E i
∥ sinθi (241)

=−E t
y sinθt

7.2 case II: magnetic meridian plane oblique (general case)

This case is much like the situation in section 5.3, except now the wave is incident from inside the
plasma and will reflect back in to the plasma.

7.2.1 orientation at the interface

The situation is shown in figure 14. As before, it is desirable to rotate into a new coordinate system

Figure 14: The orientation for oblique incident and refracted waves in a collisionless, magnetized plasma. S is incident

from below the plasma/vacuum interface (x − y plane) - from inside the plasma. It will reflect into two modes Sa and Sb

(assuming neither is cutoff) in the S−Y plane.

to facilitate calculation of the wave field solutions. The coordinate rotation is shown in figure 15.
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Orientation at the point of incidence can always be rotated into the geometry of figure 15(a), just like
in section 5.3. However, as before, it is advantageous to rotate into the primed coordinate system
geometry of figure 15(b), solve the wave fields, and then apply the inverse coordinate rotation to get
the solutions in the unprimed coordinate system.

Figure 15: Coordinate rotation from oblique unprimed system (a) to final primed system (b). The unprimed direction

cosines (l ,m,n) are (cosα,cosβ,cosγ) and the reflected angle θ j is known, where j represents the reflected mode a or b.

In the primed coordinate system, (l ,m,n) are (cosα,0,cosβ), and θ j = 0. The direction cosines for Sj in the unprimed

coordinate system are (l ,m,n) = (sinθ j ,0,−cosθ j .)

7.2.2 coordinate rotation matrix

The coordinate rotation matrix is found in the same manner as it was in section 5.3.2. The only dif-
ference is that the primed coordinate system will be oriented such that ẑ ′ will be antiparallel to Sj

(compare to equation 105)

â3 =− Sj∣∣Sj
∣∣ = (−S j ,0,−C j ) (242)

where S j = sinθ j ,C j = cosθ j . That is, the modes to be solved in the plasma are now the reflected
modes. Also, as before, there will be a rotation matrix for each mode.

With the above information, the coordinate rotation matrix to go from the unprimed to primed
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coordinate system in figure 15 is

M j =



l cosθ j −n sinθ j

G j
cosθ j

m

G j

l cosθ j −n sinθ j

G j
(−sinθ j )

m cosθ j

G j
− l cosθ j −n sinθ j

G j
−m sinθ j

G j

−sinθ j 0 −cosθ j


(243)

where (l ,m,n) are the direction cosines of Y and j = a,b, and G is defined in equation 107.
The fields in the primed coordinate system are shown in figure 16.

Figure 16: Fields at the topside plasma/vacuum interface - primed coordinate system.

Following the method in sections 5.3.3, 5.3.4, and 5.3.5, start in the primed coordinate system and
work back to the unprimed coordinate system. It is evident from those sections that only the reflected
fields need to be specified at this point, since their solutions directly involve the Booker quartic and
polarization relations in the plasma. After they are specified, they can be rotated out to the unprimed
system and their tangential fields equated with those of the incident and transmitted fields.

7.2.3 reflected fields

The reflected fields in this situation will be a superposition of the two birefringent modes in the
plasma. These fields can be written using the polarization relations from equation 94 along with the
Booker quartic to solve the different refractive indices. However, in this case, choose the solutions

42



with a positive imaginary part since the reflected waves will be traveling downward.

H
j

x ′ = n j E j
y ′ E j

x ′ =
−1

ρ j
E j

y ′ (244)

H
j

y ′ =
n j

ρ j
E j

y ′ E j
y ′ = E j

y ′ (245)

H
j

z ′ = 0 E j
z ′ =−Q j E j

y ′ (246)

where j = a,b and ni is the index of refraction for the incident wave. Recall that Q j ,ρ j , and n j are
functions of the local plasma parameters only (see table 1), which are at the ionosphere topside for
this case. Notice also that a few steps have been skipped by using the polarization relations allowing

the reflected fields to be written in terms of E j
y ′ .

The next step is to rotate these fields to the unprimed coordinate system via the inverse of the
coordinate rotation matrix in equation 243. Let

m j =M−1
j

Then
E j =m j ·E′ j

and the reflected wave fields in the unprimed coordinate system are

E a
x =

[
−ma

11
1

ρa
+ ma

12 − ma
13Qa

]
E ′a

y = A1E ′a
y (247)

E b
x =

[
−mb

11
1

ρb
+ mb

12 − mb
13Qb

]
E ′b

y = B1E ′b
y (248)

E a
y =

[
m

a
21

1

ρa
+ ma

22 − ma
23Qa

]
E ′a

y = A2E ′a
y (249)

E b
y =

[
m

b
21

1

ρb
+ mb

22 − mb
23Qb

]
E ′b

y = B2E ′b
y (250)

E a
z =

[
m

a
31

1

ρa
+ ma

32 − ma
33Qa

]
E ′a

y = A3E ′a
y (251)

E b
z =

[
m

b
31

1

ρb
+ mb

32 − mb
33Qb

]
E ′b

y = B3E ′b
y (252)
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H a
x =

[
nam

a
11 + na

ρa
m

a
12

]
E ′a

y = A4E ′a
y (253)

H b
x =

[
nbm

b
11 + nb

ρb
m

b
12

]
E ′b

y = B4E ′b
y (254)

H a
y =

[
nam

a
21 + na

ρa
m

a
22

]
E ′a

y = A5E ′a
y (255)

H b
y =

[
nbm

b
21 + nb

ρb
m

b
22

]
E ′b

y = B5E ′b
y (256)

H a
z =

[
nam

a
31 + na

ρa
m

a
32

]
E ′a

y = A6E ′a
y (257)

H b
z =

[
nbm

b
31 + nb

ρb
m

b
32

]
E ′b

y = B6E ′b
y (258)

It is not necessary to write out the incident wave fields, as they are known in the unprimed coor-
dinate system.

7.2.4 transmitted fields

The transmitted fields in vacuum are

H t
x =−H i

∥ cosθt E i
x = E t

∥ cosθt (259)

=−E t
y cosθt

H t
y =H t

y E t
y = E t

y (260)

= E t
∥

H t
z =H t

∥ sinθt E t
z =−E t

∥ sinθt (261)

=−E t
y sinθt

and the angle of transmission with respect to the plasma/vacuum interface vertical (ẑ) is given by
Snell’s law

θt = sin−1 (ni sinθi ) (262)
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7.2.5 continuity of tangential fields at the interface

Now the tangential wave field components can be equated at the plasma/vacuum interface in the
unprimed coordinate system

E i
x + A1E a

y ′ +B1E b
y ′ = E t

∥ cosθt (263)

E i
y + A2E a

y ′ +B2E b
y ′ = E t

y (264)

H i
x + A4E a

y ′ +B4E b
y ′ =−E t

y cosθt (265)

H i
y + A5E a

y ′ +B5E b
y ′ = E t

∥ (266)

This system of four equations in four unknowns is written as

−C 0 A1 B1

0 −1 A2 B2

0 C A4 B4

−1 0 A5 B5


·



E t
∥

E t
y

E ′a
y

E ′b
y


=



−E i
x

−E i
y

−H i
x

−H i
y


(267)

where for this situation, C = cosθt .
Using Cramer’s rule, the fields E t

∥,E t
y ,E a

y ′ , and E b
y ′ can be found.

E t
∥ =

1

∆

[
−C E i

y (A1B5 − A5B1)+E i
x (A2B5C − A5B2C + A4B5 − A5B4)

−H i
x (A1B5 − A5B1)+H i

y (A1B2C − A2B1C + A1B4 − A4B1)
]

(268)

E t
y =

1

∆

[
E i

y (A1B4 − A4B1 + A4B5C − A5B4C )−E i
x (A2B4 − A4B2)

+H i
x (A1B2 − A2B1 + A2B5C − A5B2C )+CH i

y (A2B4 − A4B2)
]

(269)

E ′a
y = 1

∆

[
C E i

y (B1 −B5C )−E i
x (B2C +B4)

+H i
x (B1 −B5C )+CH i

y (B2C +B4)
]

(270)

E ′b
y = 1

∆

[
−C E i

y (A1 − A5C )+E i
x (A2C + A4)

−H i
x (A1 − A5C )−CH i

y (A2C + A4)
]

(271)
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∆=C 2 (A2B5 −B2 A5)+C (A4B5 − A5B4 + A1B2 − A2B1)−B1 A4 + A1B4 (272)

The transmitted wave fields are given by equations 268 and 269, and the angle θt from equa-
tion 262. These fields can then be propagated to the sensor located above the ionosphere in free
space.

7.3 special cases

Just as in section 5.4, There are certain situations at the topside where no coordinates rotation is nec-
essary, or where some members of the matrixM j are infinite. They are the same three cases as for the
underside, but solution of the wave fields different because the incident wave comes from the plasma
side and travels to vacuum.

7.3.1 case I: incident wave perpendicular and magnetic field horizontal at the interface plane

In this case, by definition, the incident wave is a combination of O and X modes and cross coupling
between the modes from incident to reflected waves is not possible. The situation is shown in fig-
ure 17.

Figure 17: Perpendicular wave incidence along ẑ with θi = θJ = θt = 0. Y = Y · (1,0,0) and SJ = S · (0,0,−1). j = a,b; a → O

mode, b → X mode. On the plasma side: Red = O mode, Blue = X mode.

The Fresnel formulae for reflected and transmitted wave fields can be used in this case, and in fact
facilitate solution of the wave fields by inspection. The transmitted and reflected field coefficients for
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a wave incident from the plasma side and traveling to the vacuum side are [4]

∥R∥ = 1−nO

1+nO
∥T∥ = 2nO

1+nO
(273)

⊥R⊥ = nX −1

nX +1
⊥T⊥ = 2nX

nX +1
(274)

The reflected and transmitted field solutions are now written in terms of the incident fields without
the need for equating the tangential components at their interface.

reflected fields

E r
x =−∥R∥E i

x O mode (275)

H r
y = ∥R∥nOE i

x (276)

E r
y = ⊥R⊥E i

y X mode (277)

E r
z =−QX ⊥R⊥E i

y (278)

H r
x = nX ⊥R⊥E i

r (279)

H r
z = 0 (280)

transmitted fields

E t
x =−∥T∥E i

x O mode (281)

H r
y = ∥T∥E i

x (282)

E t
y = ⊥T⊥E i

y X mode (283)

E t
z = 0 (284)

H t
x =−⊥T⊥E i

y (285)

H t
z = 0 (286)

The polarization relation QX is used in equation 278 to solve Ez for the reflected X mode wave.

7.3.2 case II: incident wave oblique and magnetic field horizontal at the interface plane, perpen-
dicular to incidence plane

The orientation here is the same as in section 5.4.2. However, the plasma is now in the half-space
ẑ ≤ 0, there are two reflected modes, and Y lies along the ŷ axis. This is illustrated in figure 18.

the incident wave is oblique in a plane perpendicular to the magnetic field vector, which lies in the
interface plane. It is comprised of one, or a combination of, pure O and X modes, and will reflect into
pure O and X modes with no cross coupling. This is basically the same situation as the first special
case, where the plane of incidence is the S−Y plane, except that (just as in section 5.4.2) two coordinate
rotations separate this geometry from that in the first special case. Solutions for the transmitted and
reflected wave fields can be found by rotating this system into the system from special case 1 and
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Figure 18: Oblique wave incidence in the x − z plane. Y = Y · (0,1,0), SO = SO · (sinφO ,0,−cosφO
)
, and SX = SX ·(

sinφX ,0,−cosφX
)
.

using those field solutions. Here, the primed coordinate system will be the coordinate system from
special case 1. The rotation matrix for this transform is found as in section 5.4.2, but will be slightly
different because the reflected modes point in the negative ẑ ′ direction.

To rotate in to the primed coordinate system, first rotate about the ŷ axis by −φ j and the about the
ẑ axis by π/2, where j =O, X . This results in

R=Rz ·Ry =
 0 1 0
−C j 0 −S j

−S j 0 C j

 R−1 =
0 −C j −S j

1 0 0
0 −S j C j

 (287)

such that

E′ =R ·E E =R−1 ·E′ (288)

In the above equations S j = sinφ j , C j = cosφ j , φ j = π− θ j , and j = O, X . Furthermore, R will
contain SO ,CO for O mode and SX ,CX for X mode field rotations.

The wave fields can now be specified, and Cramer’s method used to solve them.

reflected fields The reflected fields are found by simply rotating them out from the primed coordi-
nate system using the right equation of 288 and accounting for the mode.
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E r
x =−CX E r

y ′ −SX E r
z ′ =− (Cx +SX QX )E r

y ′ X mode (289)

E r
z =−SX E r

y ′ +CX E r
z ′ = (CX QX −SX )E r

y ′ (290)

H r
y =H r

x ′ =nX E r
y ′ (291)

E r
y =E r

x ′ =−E r
∥′ O mode (292)

H r
x =−COH r

y ′ =−COnOE r
∥′ (293)

H r
z =−SOH r

y ′ =−SOnOE r
∥′ (294)

transmitted fields The transmitted fields in the unprimed system are

H t
x =−H∥Ct E t

x = E t
∥Ct

=−E y
y Ct (295)

H t
y = E t

∥ E t
y = E t

y (296)

H t
z =H t

∥ St E t
Z = E t

∥St

= E t
y St (297)

where St ,Ct are sinθt and cosθt .

continuity of tangential field components at the interface The system of four equations in four
unknowns found from applying Snell’s law to the tangential fields at the interface is

−(CX +SX Qx) 0 0 −Ct

0 −1 −1 0

0 −CnO Ct 0

nX 0 0 −1


·



E r
y ′

E r
∥′

E t
y

E t
∥


=



−E i
x

−E i
y

ni Ci E i
y

−ni (Ci E i
x −Si E i

z)


(298)

where Si ,Ci are sinθi ,cosθi and ni is the refractive index for the incident mode which is either O or
X depending on the wave field orientation with respect to Y. H i

x and H i
y were found from geometry

and Faraday’s law

H i
x = ni Ci E i

y (299)

H i
y =−ni (Ci E i

x −Si E i
z) (300)

49



The transmitted fields are

H t
x =−

Ct E i
y (Cini +COnO)

COnO +Ct
(301)

H t
y = Ci E i

xni (CX +QX SX )+E i
xnX −E i

zSini (CX +QX SX )

CtnX +CX +QX SX
(302)

H t
z =

E i
y St (Cini +COnO)

COnO +Ct
(303)

E t
x = Ct

(
Ci E i

xni (CX +QX SX )+E i
xnX −E i

zSini (CX +QX SX )
)

CtnX +CX +QX SX
(304)

E t
y =

E i
y (Cini +COnO)

COnO +Ct
(305)

E t
z =−St

(
Ci E i

xni (CX +QX SX )+E i
XnX −E i

zSini (CX +QX SX )
)

CtnX +CX +QX SX
(306)

7.3.3 case III: incident wave and magnetic field parallel, oriented perpendicular to the interface
plane

Here the incident, reflected and transmitted waves are all parallel to the magnetic field, which is per-
pendicular to the interface plane such that θi = θa,b = θt = 0. The situation is shown in figure 19.
Furthermore, as pointed out in section 5.4.3, The incident wave will be a combination of the R and L
modes. In this case, however, it will reflect into R and L modes with the possibility of cross coupling
between modes.

In this case, as before, the mode designations will be a → R and b → L.

na → nr (307)

nb → nL (308)

The reflected modes will be traveling in the −ẑ direction, so the polarization relations in that direction
are

ρa → ρR =+i (309)

ρb → ρL =−i (310)

Also, by definition there will be no E and H fields in the ẑ direction. The subscrupts ∥ and x̂ are
interchangeable here.
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Figure 19: Perpendicular wave incidence along z with θi = θr = θR,L = 0. Y = Y · (0,0,1) and SR,L = SR,L · (0,0,−1). On the

plasma side: Red = R mode, Blue = L mode.

incident fields The incident fields are

H i
x =−ni E i

y E i
x = E i

x (311)

H i
y = ni E i

x E i
y = E i

y (312)

reflected fields These will be a combination of both modes.

H r
x = naρaE a

x +nbρbE b
x E r

x =−E a
x −E b

x (313)

H r
y = naE a

x +nbE b
x E r

y = ρaE a
x +ρbE b

x (314)

transmitted fields

H t
x =−E t

y E t
x = E t

x (315)

H t
y = E t

x E t
y = E t

y (316)

continuity of tangential fields at the interface After applying Snell’s law, the system of equations is
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

−1 −1 −1 0

ρa ρb 0 −1

naρa nbρb 0 1

na nb −1 0


·



E a
x

E b
x

E t
x

E t
y


=



−E i
x

−E i
y

ni E i
y

−ni E i
x


(317)

The transmitted wave filed solutions are then

H t
x =−

−i E i
x

(
naniρb −naρb +nbniρa −nbρa

)+E i
y

(
2inanb −naniρb + ina +nbniρa + inb +niρa −niρb

)
2inanb −naρb + ina +nbρa + inb +ρa −ρb

(318)

H t
y =

E i
x

(
2inanb + inani −naρb + inbni +nbρa +niρa −niρb

)+E i
y (nani −na −nbni +nb)

2inanb −naρb + ina +nbρa + inb +ρa −ρb
(319)

E t
x =

E i
x

(
2inanb + inani −naρb + inbni +nbρa +niρa −niρb

)+E i
y (nani −na −nbni +nb)

2inanb −naρb + ina +nbρa + inb +ρa −ρb
(320)

E t
y =

−i E i
x

(
naniρb −naρb +nbniρa −nbρa

)+E i
y

(
2inanb −naniρb + ina +nbniρa + inb +niρa −niρb

)
2inanb −naρb + ina +nbρa + inb +ρa −ρb

(321)

8 conclusions

In this report, wave field polarization and mode contribution were calculated for a transionospheric
EM wave. The ionosphere is treated as a magnetized plasma and assumed to have definite lower
and upper boundaries. This construct allows for the solution of transmitted and reflected fields at
each boundary. The process of solving the transmitted and reflected wave fields also gives the mode
content of each spatial component of the wave fields.

52



References

[1] D. G. Swanson, Plasma Waves. Institute of Physics, second ed., 2003.

[2] T. H. Stix, Waves in Plasmas. Springer, second ed., 1992.

[3] F. F. Chen, Plasma Physics and Controlled Fusion. Plenum Press, second ed., 1988.

[4] K. G. Budden, Radio Waves in the Ionosphere. Cambridge University Press, 1966.

[5] K. G. Budden, The Propagation of Radio Waves. Cambridge University Press, 1985.

[6] J. D. Kraus, Antennas. McGraw Hill, second ed., 1988.

[7] J. D. Kraus, Radio Astronomy. Cygnus-Quasar, second ed., 1986.

[8] C. A. Balanis, Antenna Theory: Analysis and Design. John Wiley and Sons, second ed., 1997.

[9] K. C. Yeh and C. H. Liu, Theory of Ionospheric Waves. Academic Press, 1972.

[10] H. Booker, “Oblique propagation of electromagnetic waves in a slowly-varying non-isotropic
medium,” Proc. R. Soc. London, vol. 155, pp. 235–257, 1936.

[11] H. Booker, “Propagation of wave packets incident obliquely on a stratified doubly refracting
ionosphere,” Phil. Trans. R. Soc. London, vol. 237, pp. 411–451, 1939.

[12] H. Booker, “Application of the magnetoionic theory to radio waves incident obliquely upon a
horizontally stratified ionosphere,” J. Geophys. Res., vol. 54, pp. 243–274, 1949.

[13] G. B. Arfken, Mathematical Methods for Physicists. Academic Press, third ed., 1985.

[14] A. W. Goodman and E. B. Saff, Calculus: Concepts and Calculations. Macmillan Publishing Co.
Inc., 1981.

[15] M. Light, P. Colestock, L. Romero, T. Light, and D. Smith, “Bdv generation ii-f emp source-to-
sensor model modules: Signal generation, signal propagation, noise, low and high band anten-
nas,” Technical Report LA-CP 13-01386, LANL.

[16] M. Light, “Ray trace modeling code,” Technical Report LA-UR 19-26644, LANL.

[17] M. Light, “Ionospheric transfer function tests: Line of sight and slab,” Technical Report DRAFT,
LANL.

53


